GW-KNX1
Startup Guide
For Interfacing Unitronics PLCs
To Building Automation Systems:
KNX, Modbus RTU, Modbus/TCP
A Quick Start Guide

1. Record the information about the unit. (Section 2.1)

2. **Connect GW-KNX1**'s 3 pin RS-485 port to Unitronics PLC RS485 port. (Section 3.1)

3. Connect GW-KNX1 6 pin KNX connector to the KNX network that is connected to each of the devices. (Section 3.2)

4. Connect Power to GW-KNX1 6 pin connector. (Section 3.4)

5. Modbus RTU: Use a browser to access the GW-KNX1 Web GUI to change the IP Address. No changes to the configuration are necessary. (Section 5.2)
TABLE OF CONTENTS

1 Introduction ... 5
 1.1 GW-KNX1 Gateway ... 5

2 KNX Setup for GW-KNX1 .. 6
 2.1 Record Identification Data ... 6
 2.2 Point Count Capacity and Registers per Device ... 6

3 Interfacing GW-KNX1 to Devices .. 7
 3.1 GW-KNX1 Showing Connection Ports .. 7
 3.2 Device Connections to GW-KNX1 ... 8
 3.3 Modbus RTU: Wiring Field Port to R485 Network ... 9
 3.4 Power-Up GW-KNX1 ... 10

4 Creating configuration file and configuring the PLC .. 11
 4.1 UniKNX configurator .. 11
 4.2 PLC Configuration .. 18

5 Modbus RTU: Change the GW-KNX1 IP Address ... 20
 5.1 Connect the PC to the GW-KNX1 via Ethernet Port ... 20
 5.2 Modbus TCP/IP: Setting IP Address for Field Network ... 21

Appendix A. Troubleshooting .. 23
 Appendix A.1. Lost or Incorrect IP Address ... 23
 Appendix A.2. Viewing Diagnostic information .. 24
 Appendix A.3. Check Wiring and Settings .. 24
 Appendix A.4. Take Diagnostic Capture With the FieldServer Utilities .. 25
 Appendix A.5. LED Diagnostics for Communications Between GW-KNX1 and Devices 27

Appendix B. Reference .. 28
 Appendix B.1. Specifications ... 28
 Appendix B.2. Compliance with UL Regulations ... 28

LIST OF FIGURES

Figure 1: GW-KNX1 Part Numbers .. 6
Figure 2: Supported Point Count Capacity ... 6
Figure 3: GW-KNX1 ... 7
Figure 4: Power and KNX Connections ... 8
Figure 5: Connection from GW-KNX1 to RS-485 Field Network .. 9
Figure 6: RS-485 BMS Network EOL Switch .. 9
Figure 7: Required current draw for the GW-KNX1 ... 10
Figure 8: Power Connections .. 10
Figure 9: Client side connection .. 11
Figure 10: KNX Device Instances ... 12
Figure 11: KNX Map Descriptor .. 12
Figure 12: Modbus RTU connection .. 13
Figure 13: Modbus TCP/IP connection .. 14
Figure 14: Finish .. 15
Figure 15: File menu ... 15
Figure 16: File Transfer Screen .. 17
Figure 17: MODBUS RTU configuration ... 18
Figure 18: Example of COM initialize .. 18
Figure 19: Example of Modbus configuration ... 19
Figure 20: Example of MODBUS TCP/IP configurator ... 19
Figure 21: Example of TCP/IP card and socket initialize ... 19
Figure 22: Web GUI Landing Page .. 21
Figure 23: Changing IP Address via Web GUI ... 21
Figure 24: Ethernet Port Location .. 23
Figure 25: Error messages screen ... 24
Figure 26: Ethernet Port Location ... 25
Figure 27: Diagnostic LEDs ... 27
Figure 28: Specifications ... 28
INTRODUCTION

1.1 GW-KNX1 Gateway

The GW-KNX1 is an external, high performance **Building Automation multi-protocol gateway** that is preconfigured to automatically communicate between Unitronics’ products (hereafter called “device”) connected to the GW-KNX1 and automatically configures them for Modbus.

The getaway will convert the Modbus communication to KNX, letting the user connect Unitronics products to KNX networks.
2 KNX SETUP FOR GW-KNX1

2.1 Record Identification Data

Each GW-KNX1 has a product label on the side or the back of the unit. The data from the table should be recorded, as it may be required for technical support. The product label appears with the following information (see table):

<table>
<thead>
<tr>
<th>Model</th>
<th>Serial Number</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW-KNX1</td>
<td>xxxxxxxxx</td>
<td>NN:NN:NN:NN</td>
</tr>
</tbody>
</table>

Figure 1: GW-KNX1 Part Numbers

- GW-KNX1 units have the following 3 ports: RS-485 + Ethernet + KNX

2.2 Point Count Capacity and Registers per Device

The total number of KNX Registers presented by all of the devices attached to the GW-KNX1 cannot exceed 1500 registers.

<table>
<thead>
<tr>
<th>Part number</th>
<th>Total Registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW-KNX1</td>
<td>1,500</td>
</tr>
</tbody>
</table>

Figure 2: Supported Point Count Capacity
3 INTERFACING GW-KNX1 TO DEVICES

3.1 GW-KNX1 Showing Connection Ports

Figure 3: GW-KNX1
3.2 Device Connections to GW-KNX1

GW-KNX1 6 Pin Phoenix connector for KNX Devices

- Pins 1 through 3 are for KNX devices.
 - The RS-485 GND (Pin 3) is not typically connected
- Pins 4 through 6 are for power. **Do not connect power** (wait until Section 3.4).

<table>
<thead>
<tr>
<th>Device Pins</th>
<th>GW-KNX1 Pin #</th>
<th>Pin assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin KNX +</td>
<td>Pin 1</td>
<td>KNX +</td>
</tr>
<tr>
<td>Pin KNX -</td>
<td>Pin 2</td>
<td>KNX -</td>
</tr>
<tr>
<td>Pin GND</td>
<td>Pin 3</td>
<td>KNX GND</td>
</tr>
<tr>
<td>Power In (+)</td>
<td>Pin 4</td>
<td>V +</td>
</tr>
<tr>
<td>Power In (-)</td>
<td>Pin 5</td>
<td>V -</td>
</tr>
<tr>
<td>Frame Ground</td>
<td>Pin 6</td>
<td>FRAME GND</td>
</tr>
</tbody>
</table>

Figure 4: Power and KNX Connections
3.3 Modbus RTU: Wiring Field Port to R485 Network

- Connect the Modbus RTU RS-485 network wires to the 3-pin RS-485 connector on GW-KNX1 as shown below in Figure 5.
 - The RS-485 GND (Pin 3) is not typically connected
- If the GW-KNX1 is the last device on the RS-485 trunk, then the End-Of-Line Termination Switch needs to be enabled. (Figure 6).
 - The default setting from the factory is OFF (switch position = right side)
 - To enable the EOL Termination, turn the EOL switch ON (switch position = left side)

<table>
<thead>
<tr>
<th>BMS RS-485 Wiring</th>
<th>GW-KNX1 Pin #</th>
<th>Pin Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485 +</td>
<td>Pin 1</td>
<td>RS-485 +</td>
</tr>
<tr>
<td>RS-485 -</td>
<td>Pin 2</td>
<td>RS-485 -</td>
</tr>
<tr>
<td>-</td>
<td>Pin 3</td>
<td>RS-485 GND</td>
</tr>
</tbody>
</table>

Figure 5: Connection from GW-KNX1 to RS-485 Field Network

Figure 6: RS-485 BMS Network EOL Switch
3.4 Power-Up GW-KNX1

Apply power to GW-KNX1 as shown below in Figure 8. Ensure that the power supply used complies with the specifications provided in Appendix B.1.

- GW-KNX1 accepts either 9-30VDC or 12-24 VAC on pins 4 and 5.
- Frame GND should be connected.

<table>
<thead>
<tr>
<th align="left">Power Requirement for GW-KNX1 External Gateway</th>
<th>Current Draw Type</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">GW-KNX1 Family</td>
<td>12VDC/VAC</td>
</tr>
<tr>
<td align="left">GW-KNX1 (Typical)</td>
<td>170mA</td>
</tr>
<tr>
<td align="left">GW-KNX1 (Maximum)</td>
<td>240mA</td>
</tr>
<tr>
<td align="left">GW-KNX1 (Maximum)</td>
<td>12VDC/VAC</td>
</tr>
<tr>
<td align="left">GW-KNX1 (Maximum)</td>
<td>100mA</td>
</tr>
<tr>
<td align="left">GW-KNX1 (Maximum)</td>
<td>140mA</td>
</tr>
<tr>
<td align="left">GW-KNX1 (Maximum)</td>
<td>100mA</td>
</tr>
</tbody>
</table>

NOTE: These values are ‘nominal’ and a safety margin should be added to the power supply of the host system. A safety margin of 25% is recommended.

![Figure 7: Required current draw for the GW-KNX1](image)

![Figure 8: Power Connections](image)
4 CREATING CONFIGURATION FILE AND CONFIGURATING THE PLC

4.1 UniKNX configurator

UniKNX configurator is a tool by Unitronics that allows the user to create the configuration file for the GW-KNX1 easily.

- **Client side connections**: In this window you will configure the KNX side of the communication.

First the user must choose the type of KNX physical memory scheme he wishes to work with and the physical KNX address of the GW-KNX1.

![Figure 9: Client side connection](image)
- **KNX Device instances**: Here you will add all the KNX slave devices.

 ![Figure 10: KNX Device Instances](image)

- **KNX Map Descriptions**: Here you will add the data types to be read and/or write in each node, select the data type, group address and function type.

 ![Figure 11: KNX Map Descriptor](image)
Note that:
 - Read function will let you read and write while write function will only let you write.
 - Read and write block continuous means that the data will be read and write continuously.
 - Write block on change means that only when there is change in the data, it will be written.
 - Active Read at Startup function is a once-off read function, and then waits for any updated data.

- **Modbus Connection**: Here the user will configure the Modbus connection to the PLC. First the user must select between Modbus protocol: RTU or TCP/IP, then the corresponding configuration.

![Modbus RTU connection](image-url)
• **Finish**: This window will show the MODBUS slave addressing map of the data to be read/write from/to the device -to be use in Unitronics software- and will let you export the configuration file that you will download to the GW-KNX1 via the GUI browser.
- **File menu** will let you save the current configuration or open a previously saved one.
To download the CSV file you just created, please follow the next instructions:

a. Connect a standard CAT5 Ethernet cable (Straight through or Cross-Over) between the PC and GW-KNX1

b. The Default IP Address of GW-KNX1 is **192.168.1.24**, Subnet Mask is **255.255.255.0**. If the PC and GW-KNX1 are on different IP Networks, assign a static IP Address to the PC on the 192.168.1.xxx network

c. Go to [Start] > [Control Panel] > [Network Connections]
d. Right-click on Local Area Connection > Properties

e. Highlight [Internet Protocol (TCP/IP)] > [Properties]
f. Select: Use the following IP address

```
Use the following IP address:
IP address: 192.168.1.24
Subnet mask: 255.255.255.0
Default gateway: . . .
```

g. Click [OK] twice

h. After setting your PC to be on the same subnet as the GW-KNX1, open a web browser on your PC and enter the IP address of the GW-KNX1; the default address is 192.168.1.24.

i. If IP address of the GW-KNX1 has been changed by previous configuration, download FieldServer Toolbox to discover unknown IP address of the GW-KNX1. http://www.fieldserver.com/docs/downloads/FieldServer-Toolbox.zip

j. The Web GUI page will be presented.

k. From the FST Web GUI’s landing page, click on “Setup” to expand the navigation tree and then select “File transfer” to access the IP Settings menu. (Error! Reference source not found.)
l. Select browse and look for the CSV file you just created.

m. Click on submit button. The download process should take a couple of seconds.

n. To finish please click on system restart.
4.2 PLC Configuration

The PLC must be configured as a MODBUS master. Depending on the MODBUS protocol the user has chosen, the PLC needs to be configure as MODBUS RTU or MODBUS TCP_IP master.

Example for Vision/Samba:

![Figure 17: MODBUS RTU configuration](image1)

![Figure 18: Example of COM initialize](image2)
For technical support and questions concerning setting up the GW-BAC1 to work with a Unitronics PLC (e.g. Vision, UniStream etc.) please contact Unitronics technical support at support@unitronics.com.
5 MODBUS RTU: CHANGE THE GW-KNX1 IP ADDRESS

5.1 Connect the PC to the GW-KNX1 via Ethernet Port

- Connect a CAT5 Ethernet cable (Straight through or Cross-Over) between the local PC and GW-KNX1.

- The Default IP Address of GW-KNX1 is **192.168.1.24**, Subnet Mask is **255.255.255.0**. If the PC and GW-KNX1 are on different IP Networks, assign a static IP Address to the PC on the 192.168.1.xxx network.

- For Windows XP:

 ![Start Button] > Control Panel > Network Connections

 Right-click on Local Area Connection > Properties

 Highlight **Internet Protocol (TCP/IP)** > Properties

- For Windows 7:

 ![Start Button] > Control Panel > Network and Internet

 > Network and Sharing Center > Change adapter settings

 Right-click on Local Area Connection > Properties

 Highlight **Internet Protocol Version 4 (TCP/IPv4)** > Properties

- For Windows XP and Windows 7, use the following IP Address:

 | IP address: | 132.168.1.11 |
 | Subnet mask: | 255.255.255.0 |
 | Default gateway: | . . . |

- Click **OK** twice.
5.2 Modbus TCP/IP: Setting IP Address for Field Network

- After setting your PC to be on the same subnet as the GW-KNX1 (Section 5.1), open a web browser on your PC and enter the IP Address of the GW-KNX1; the default address is 192.168.1.24.

- The Web GUI will be displayed as the landing page (Figure 22)

Figure 22: Web GUI Landing Page

- From the Web GUI landing page, click on “Setup” to expand the navigation tree and then select “Network Settings” to access the IP Settings menu. (Figure 23)

Figure 23: Changing IP Address via Web GUI
• Enter the new IP Address for the GW-KNX1’s Ethernet port in the “N1 IP Address” field.
• If necessary, change the Subnet Mask setting in the “N1 Netmask” field.
• If necessary, change the IP Gateway setting in the “Default Gateway” field.

NOTE: If the GW-KNX1 is connected to a router, the IP Gateway of the GW-KNX1 should be set to the IP Address of that router.

• Click the “System Restart” button at the bottom of the page to apply changes and restart the GW-KNX1.
• Unplug Ethernet cable from PC and connect the GW-KNX1 to the network hub or router.
• **Record the IP Address assigned to the GW-KNX1 for future reference.**
Appendix A. Troubleshooting

Appendix A.1. Lost or Incorrect IP Address

- Ensure that FieldServer Toolbox is loaded onto the local PC. If not, download FieldServer-Toolbox.zip on the Sierra Monitor webpage, under Customer Care-Resource Center, Software Downloads:

- Extract the executable file and complete the installation.

- Disable any wireless Ethernet adapters on the PC/Laptop.
- Disable firewall and virus protection software if possible.
- Connect a standard CAT5 Ethernet cable between the PC and GW-KNX1.
- Double click on the FS Toolbox Utility.
- Check IP Addresses from the Device listings.

- Correct IP Address(es) by right clicking the settings icon and changing the IP Address.
Appendix A.2. Viewing Diagnostic information

- Type the IP Address of the GW-KNX1 into the web browser or use the FieldServer Toolbox to connect to the GW-KNX1.

- Click on Diagnostics and Debugging Button, then click on view, and then on connections.

- If there are any errors showing on the Connection page, please refer to Appendix A.3 for the relevant wiring and settings.

![Error messages screen](image)

Figure 25: Error messages screen

Appendix A.3. Check Wiring and Settings

- No COMS on KNX side. If Tx/Rx are not flashing rapidly then there is a COM issue on the KNX side. To fix, check the following:
 - Visual observations of LEDs on GW-KNX1 (Appendix A.5)
 - Verify wiring
 - Verify KNX device is connected to the same subnet as the GW-KNX1

- Field COM problems:
 - Visual observations of LEDs on GW-KNX1 (Appendix A.5)
 - Check dipswitch settings (using correct baud rate and device instance)
 - Verify IP Address setting
 - Verify wiring

If the problem still exists, a Diagnostic Capture needs to be taken and sent to Sierra Monitor Corporation. (Appendix A.4)
Appendix A.4. Take Diagnostic Capture With the FieldServer Utilities

- Once the Diagnostic Capture is complete, email it to support@sierramonitor.com. The Diagnostic Capture will allow us to rapidly diagnose the problem.
- Ensure that FieldServer Toolbox is Loaded on the PC that is currently being used, or download FieldServer-Toolbox.zip on the Sierra Monitor webpage, under Customer Care: Resource Center, Software Downloads: http://www.sierramonitor.com/customer-care/resource-center?filters=software-downloads

- Extract the executable file and complete the installation.

- Disable any wireless Ethernet adapters on the PC/Laptop.
- Disable firewall and virus protection software if possible.
- Connect a standard CAT5 Ethernet cable between the PC and GW-KNX1.
- Double click on the FS Toolbox Utility.

 Step 1: Take a Log
 - Click on the diagnose icon \[\text{\[diagnose\]}\] of the desired device
Select “Full Diagnostic”

If desired, the default capture period can be changed

Click on “Start Diagnostic”

When the capture period is finished, the “Diagnostic Test Complete” window will appear
Step 2: Send Log

Once the diagnostic test is complete, a .zip file will be saved on the PC.

- Click “Open” to launch explorer and have it point directly at the correct folder, then email the diagnostic zip file to support@sierramonitor.com.

Diagnostic_2014-07-17_20-15.zip
2014/07/17 20:16
zip Archive
676 KB

Appendix A.5. LED Diagnostics for Communications Between GW-KNX1 and Devices

Please see the diagram below for GW-KNX1 LED Locations.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPL</td>
<td>The SPL LED will light if the unit is not getting a response from one or more of the configured devices.</td>
</tr>
<tr>
<td>RUN</td>
<td>The RUN LED will start flashing 20 seconds after power indicating normal operation.</td>
</tr>
<tr>
<td>ERR</td>
<td>The SYS ERR LED will go on solid 15 seconds after power up. It will turn off after 5 seconds. A steady red light will indicate there is a system error on the unit. If this occurs, immediately report the related “system error” shown in the error screen of the GUI interface to technical support for evaluation.</td>
</tr>
<tr>
<td>RX</td>
<td>The RX LED will flash when a message is received on the host port.</td>
</tr>
<tr>
<td>TX</td>
<td>The TX LED will flash when a message is sent on the host port.</td>
</tr>
<tr>
<td>PWR</td>
<td>This is the power light and should show steady green at all times when unit is powered.</td>
</tr>
</tbody>
</table>

Figure 27: Diagnostic LEDs
Appendix B.1. Specifications

<table>
<thead>
<tr>
<th>GW-KNX1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Connections</td>
<td>One 6-pin Phoenix connector with: KNX port (+ / - / gnd)</td>
</tr>
<tr>
<td></td>
<td>Power port (+ / - / Frame-gnd)</td>
</tr>
<tr>
<td></td>
<td>One 3-pin Phoenix connector with: RS-485 port (+ / - / gnd)</td>
</tr>
<tr>
<td></td>
<td>One Ethernet 10/100 BaseT port</td>
</tr>
<tr>
<td>Approvals</td>
<td>CE Certified; TUV approved to UL 916, EN 60950-1,</td>
</tr>
<tr>
<td></td>
<td>EN 50491-3 and CSA C22-2 standards; FCC Class A Part 15;</td>
</tr>
<tr>
<td></td>
<td>DNP3 Conformance Tested; RoHS Compliant; CSA 205 Approved</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>Multi-mode power adapter: 9-30VDC or 12 - 24VAC</td>
</tr>
<tr>
<td>Physical Dimensions</td>
<td>11.5 cm L x 8.3 cm W x 4.1 cm H (4.5 x 3.2 x 1.6 in.)</td>
</tr>
<tr>
<td>Weight</td>
<td>0.2 kg (0.4 lbs)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to 75°C (-40°F to 167°F)</td>
</tr>
<tr>
<td>Surge Suppression</td>
<td>EN61000-4-2 ESD EN61000-4-3 EMC EN61000-4-4 EFT</td>
</tr>
<tr>
<td>Humidity</td>
<td>5 - 90% RH (non-condensing)</td>
</tr>
</tbody>
</table>

(Footnotes: Specifications subject to change without notice)

Figure 28: Specifications

Appendix B.2. Compliance with UL Regulations

For UL compliance, the following instructions must be met when operating GW-KNX1.

- The units shall be powered by listed LPS or Class 2 power supply suited to the expected operating temperature range.

- The interconnecting power connector and power cable shall:
 - Comply with local electrical code
 - Be suited to the expected operating temperature range
 - Meet the current and voltage rating for GW-KNX1/Net

- Furthermore, the interconnecting power cable shall:
 - Be of length not exceeding 3.05m (118.3”)
 - Be constructed of materials rated VW-1, FT-1 or better

- If the unit is to be installed in an operating environment with a temperature above 65 °C, it should be installed in a Restricted Access Area requiring a key or a special tool to gain access.

- This device must not be connected to a LAN segment with outdoor wiring.