Snip-in I/O Modules

The V200-18-E5B plugs directly into the back of compatible Unitronics OPLCs, creating a self-contained PLC unit with a local I/O configuration.

Features

- 18 isolated digital inputs, includes 2 H.S.C inputs, type pnp/npn (source/sink)
- 15 isolated pnp (source) outputs
- 2 isolated pnp/npn (source/sink) transistor outputs, includes 2 H.S. outputs
- 3 analog inputs

General Description

The Snap-in I/O plugs directly into the back of compatible Unitronics PLCs, creating a self-contained PLC unit with a local I/O configuration. Detailed Installation Guides containing the I/O wiring diagrams for these models, technical specifications, and additional documentation are located in the Technical Library in the Unitronics website: https://unitronicsplc.com/support-technical-library/

Alert Symbols and General Restrictions

When any of the following symbols appear, read the associated information carefully.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Danger</td>
<td>The identified danger causes physical and property damage.</td>
</tr>
<tr>
<td>!</td>
<td>Warning</td>
<td>The identified danger could cause physical and property damage.</td>
</tr>
<tr>
<td>Caution</td>
<td>Caution</td>
<td>Use caution.</td>
</tr>
</tbody>
</table>

- Before using this product, the user must read and understand this document.
- All examples and diagrams are intended to aid understanding, and do not guarantee operation. Unitronics accepts no responsibility for actual use of this product based on these examples.
- Please dispose of this product according to local and national standards and regulations.
- Only qualified service personnel should open this device or carry out repairs.

- Failure to comply with appropriate safety guidelines can cause severe injury or property damage.
- Do not attempt to use this device with parameters that exceed permissible levels.
- To avoid damaging the system, do not connect/disconnect the device when power is on.

Environmental Considerations

- Do not install in areas with: excessive or conductive dust, corrosive or flammable gas, moisture or rain, excessive heat, regular impact shocks or excessive vibration, in accordance with the standards given in the product’s technical specification sheet.
- Do not place in water or let water leak onto the unit.
- Do not allow debris to fall inside the unit during installation.
- Ventilation: 10mm space required between controller’s top/bottom edges & enclosure walls.
- Install at maximum distance from high-voltage cables and power equipment.

UL Compliance

The following section is relevant to Unitronics’ products that are listed with the UL.

UL Ratings, Programmable Controllers for Use in Hazardous Locations.

Class I, Division 2, Groups A, B, C and D

These Release Notes relate to all Unitronics products that bear the UL symbols used to mark products that have been approved for use in hazardous locations, Class I, Division 2, Groups A, B, C and D.

Caution

- This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D, or Non-hazardous locations only.
- Input and output wiring must be in accordance with Class I, Division 2 wiring methods and in accordance with the authority having jurisdiction.
- WARNING—Explosion Hazard—substitution of components may impair suitability for Class I, Division 2.
- WARNING – EXPLOSION HAZARD – Do not connect or disconnect equipment unless power has been switched off or the area is known to be non-hazardous.
- WARNING – Exposure to some chemicals may degrade the sealing properties of material used in Relays.
- This equipment must be installed using wiring methods as required for Class I, Division 2 as per the NEC and/or CEC.
Relay Output Resistance Ratings

The products listed below contain relay outputs: V200-18-E1B, V200-18-E2B.

- When these specific products are used in hazardous locations, they are rated at 3A res, when these specific products are used in non-hazardous environmental conditions, they are rated at 5A res, as given in the product’s specifications.

Certification UL des automates programmables, pour une utilisation en environnement à risques, Class I, Division 2, Groups A, B, C et D.

This note refers to all Unitronics products carrying the UL symbol.

Caution

- The entries/outputs must be in agreement with the methods of cabling according to Class I, Division 1 and in accordance with the authority competent.
- WARNING: Explosion Risk – The replacement of certain components invalidates the certification of the product according to Class I, Division 2.
- WARNING - DANGER OF EXPLOSION - Do not connect or do not disconnect without removing the equipment before opening it to avoid non-damaging use.
- WARNING - Exposure to certain chemical products may degrade the properties of the materials used for the cable within the relay.
- This equipment must be installed using the wiring methods according to Class I, Division 2 and in accordance with the competent authority.

Certification de la résistance des sorties relais

These products listed below contain relay outputs: V200-18-E1B, V200-18-E2B.

- When these specific products are used in hazardous locations, they support a current of 3A charge resistive, when these specific products are used in an environment non-dangerous, they are evaluated at 5A res, as indicated in the specifications of the product Plages of temperatures

Wiring

- Do not touch live wires.
- This equipment is designed to operate only in SELV/PELV/Class 2/Limited Power environments.
- All power supplies in the system must include double insulation. Power supply outputs must be rated as SELV/PELV/Class 2/Limited Power.
- Do not connect either the ‘Neutral’ or ‘Line’ signal of the 110/220VAC to device’s 0V pin.
- All wiring activities should be performed while power is OFF.
- Use over-current protection, such as a fuse or circuit breaker, to avoid excessive currents into the power supply connection point.
- Unused points should not be connected (unless otherwise specified). Ignoring this directive may damage the device.
- Double-check all wiring before turning on the power supply.
- To avoid damaging the wire, do not exceed a maximum torque of:
 - Controllers offering a terminal block with pitch of 5mm: 0.5 N·m (5 kgf·cm).
 - Controllers offering a terminal block with pitch of 3.81mm: 0.2 N·m (2 kgf·cm).
- Do not use tin, solder, or any substance on stripped wire that might cause the wire strand to break.
- Install at maximum distance from high-voltage cables and power equipment.

Wiring Procedure

Use crimp terminals for wiring:
- Controllers offering a terminal block with pitch of 5mm: 26-12 AWG wire (0.13 mm² –3.31 mm²).
- Controllers offering a terminal block with pitch of 3.81mm: 26-16 AWG wire (0.13 mm² – 1.31 mm²).

1. Strip the wire to a length of 7±0.5mm (0.270–0.300”).
2. Unscrew the terminal to its widest position before inserting a wire.
3. Insert the wire completely into the terminal to ensure a proper connection.
4. Tighten enough to keep the wire from pulling free.

Wiring Guidelines

- Use separate wiring ducts for each of the following groups:
 - Group 1: Low voltage I/O and supply lines, communication lines.
 - Group 2: High voltage Lines, Low voltage noisy lines like motor driver outputs.
- Separate these groups by at least 10cm (4”). If this is not possible, cross the ducts at a 90° angle.
- For proper system operation, all 0V points in the system should be connected to the system 0V supply rail.
- Product-specific documentation must be fully read and understood before performing any wiring.
- Allow for voltage drop and noise interference with input lines used over an extended distance.
- Use wire that is properly sized for the load.
Earthing the product

To maximize system performance, avoid electromagnetic interference as follows:

- Use a metal cabinet.
- Connect the 0V and functional ground points (if exist) directly to the earth ground of the system.
- Use the shortest, less than 1m (3.3 ft.) and thickest, 2.08mm² (14AWG) min, wires possible.

Digital Inputs

Each group of 9 inputs has a common signal. Each group can be used as either pnp (source) or npn (sink), when appropriately wired as shown in the following figures.

Inputs I0 and I2 can be used as normal digital inputs, as high-speed counters, or as part of a shaft encoder.

Inputs I1 and I3 can be used as normal digital inputs, as high-speed counter resets, or as part of a shaft encoder.

npn (sink) digital input wiring

pnp (source) digital input wiring

npn (sink) high-speed counter

pnp (source) high-speed counter

npn (sink) shaft encoder wiring

pnp (source) shaft encoder wiring

Inputs I0, I1, and I2, I3 can be used as shaft encoders as shown below.
Digital Outputs

Wiring Power Supplies
Use a 24VDC power supply for all digital outputs.

1. Connect the “positive” lead to the “V0” and “V1” terminal, and the “negative” lead to the common “0V” terminal.
 - V0 provides the power supply for Outputs #0, 1, 2, 3, 4, 5, 6, 7, and 8.
 - V1 provides the power supply for Outputs #9, 10, 11, 12, 13, 14, 15, and 16.
 - In the event of voltage fluctuations or non-conformity to voltage power supply specifications, connect the device to a regulated power supply.

Transistor Outputs
- Outputs 0 and 1 can function as either npn or pnp, in accordance with jumper settings and wiring. Open the device and set the jumpers according to the instructions beginning on page 6.
- Outputs 2 to 16 function as pnp only.
- The 0V signal of the transistor outputs is isolated from the controller’s 0V signal.
Analog Inputs

- Shields should be connected at the signal source.
- To set the inputs:
 - Use the appropriate wiring as shown below.
 - Open the device and set the jumpers according to the instructions beginning on page 6.
- Inputs may be wired to work with either current or voltage.
- All inputs share a common COM signal.
Changing Jumper Settings

To access the jumpers, you must remove the snap-in I/O module from the controller, and then remove the module’s PCB board. Before you begin, turn off the power supply, disconnect and dismount the controller.

- Before performing these actions, touch a grounded object to discharge any electrostatic charge.
- Avoid touching the PCB board directly by holding the PCB board by its connectors.

Accessing the Jumpers

First, remove the snap-in module.

1. Locate the 4 buttons on the sides of the module, two on either side. Press the 2 buttons on either side of the module as shown, and hold them down to open the locking mechanism.

2. Gently rock the module from side to side, easing the module from the controller.

3. Using a Philips screwdriver, remove the center screw, shown in the figure below, from the module’s upper PCB board. Do not remove any other screws.

4. Holding the PCB board by its edges, gently lift it out of the module.
Select the desired function by changing the jumper settings according to the figure and tables shown below.

Analog Input Jumpers

<table>
<thead>
<tr>
<th>Jumper #</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input 2</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>Analog input 1</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Analog input 0</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>Analog input 0</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Analog input 0</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>Analog input 0</td>
<td>3</td>
<td>A</td>
</tr>
</tbody>
</table>

Note that Jumpers #5, 8, 11, 12, 13, 14, 15 & 16 are not used

Digital Output Jumpers

<table>
<thead>
<tr>
<th>Jumper #</th>
<th>PNP*</th>
<th>NPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Output 0</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Digital Output 1</td>
<td>2</td>
<td>A</td>
</tr>
</tbody>
</table>

* Default factory setting

Reassembling the controller

1. Return the PCB board to the module and secure the center screw.
2. Next, reinstall the module. Line the circular guidelines on the controller up with the guidelines on the Snap-in I/O Module as shown below.
3. Apply even pressure on all 4 corners until you hear a distinct ‘click’. The module is now installed. Check that all sides and corners are correctly aligned.
V200-18-E5B Technical Specifications

Digital Inputs

- **Number of inputs**: 18 (in two groups)
- **Input type**: pnp (source) or npn (sink)
- **Galvanic isolation**
 - Digital inputs to bus: Yes
 - Digital inputs to digital inputs in the same group: No
 - Group to group, digital inputs: Yes
- **Nominal input voltage**: 24VDC
- **Input voltage**
 - pnp (source): 0-5VDC for Logic ‘0’, 17-28.8VDC for Logic ‘1’
 - npn (sink): 17-28.8VDC for Logic ‘0’, 0-5VDC for Logic ‘1’
- **Input current**
 - 8.8mA@24VDC for inputs #0 to #3
 - 6mA@24VDC for inputs #4 to #17
- **Response time**
 - 10mSec typical for outputs #0 to #3
 - 2mSec typical for outputs #4 to #17
- **High speed inputs**
 - Specifications below apply when these inputs are wired for use as a high-speed counter input/shaft encoder. See Notes 1 and 2.
 - **Resolution**: 32-bit
 - **Frequency**: 10kHz maximum
 - **Minimum pulse width**: 40μs

Notes:

1. Inputs #0 and #2 can each function as either high-speed counter or as part of a shaft encoder. In each case, high-speed input specifications apply. When used as a normal digital input, normal input specifications apply.
2. Inputs #1 and #3 can each function as either counter reset, or as a normal digital input; in either case, its specifications are those of a normal digital input. These inputs may also be used as part of a shaft encoder. In this case, high-speed input specifications apply.

Digital Outputs

- **Digital Output’s Power Supply**: See Note 3.
- **Nominal operating voltage**: 24VDC
- **Operating voltage**: 20.4 to 28.8VDC
- **Quiescent current**: 20mA@24VDC.
- **Max. current consumption**: 80mA@24VDC. See Note 4.

Galvanic isolation

- Digital power supply to bus: Yes
- Digital power supply to transistor outputs: No

Notes:

3. V0 provides the power supply for Outputs #0, 1, 2, 3, 4, 5, 6, 7 and 8. V1 provides the power supply for Outputs #9, 10, 11, 12, 13, 14, 15 and 16. V0 and V1 share a common 0V signal.
4. Maximum current consumption does not provide for pnp output requirements. The additional current requirement of pnp outputs must be added.
Snap-in I/O Modules

Transistor Outputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of outputs</td>
<td>17 (in two groups). See Note 5.</td>
</tr>
<tr>
<td>Output type</td>
<td></td>
</tr>
<tr>
<td>Outputs #0 and #1</td>
<td>pnp: P-MOSFET (open drain)</td>
</tr>
<tr>
<td></td>
<td>npn: N-MOSFET (open drain)</td>
</tr>
<tr>
<td>Each can be individually set as pnp (source) or</td>
<td></td>
</tr>
<tr>
<td>npn (sink) via wiring and jumper settings</td>
<td></td>
</tr>
<tr>
<td>Outputs #2 to #16</td>
<td>pnp: P-MOSFET (open drain)</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td></td>
</tr>
<tr>
<td>Transistor outputs to bus</td>
<td>Yes</td>
</tr>
<tr>
<td>Transistor outputs to transistor outputs</td>
<td>No</td>
</tr>
<tr>
<td>Group to group</td>
<td>No</td>
</tr>
<tr>
<td>Output current</td>
<td>pnp: 0.5A maximum per output, total maximum current for each group: 3A.</td>
</tr>
<tr>
<td></td>
<td>npn: 50mA maximum per output</td>
</tr>
<tr>
<td>Maximum frequency</td>
<td></td>
</tr>
<tr>
<td>Resitive load</td>
<td>20Hz</td>
</tr>
<tr>
<td>Inductive load</td>
<td>0.5Hz</td>
</tr>
<tr>
<td>High-speed output maximum frequency (resistive load)</td>
<td>pnp: 2kHz</td>
</tr>
<tr>
<td></td>
<td>npn: 50kHz</td>
</tr>
<tr>
<td>See Note 6</td>
<td></td>
</tr>
<tr>
<td>ON voltage drop</td>
<td>pnp: 0.5VDC maximum</td>
</tr>
<tr>
<td></td>
<td>npn: 0.4VDC maximum</td>
</tr>
<tr>
<td>Short circuit protection</td>
<td>Yes (pnp only)</td>
</tr>
<tr>
<td>pnp (source) power supply</td>
<td>See Digital Output’s Power Supply above</td>
</tr>
<tr>
<td>npn (sink) power supply</td>
<td></td>
</tr>
<tr>
<td>operating voltage</td>
<td>3.5V to 28.8VDC, unrelated to the voltage of either the I/O module or the controller</td>
</tr>
</tbody>
</table>

Notes:

5. Outputs #0, 1, 2, 3, 4, 5, 6, 7 and 8 share a common power signal. Outputs #8,9,10,11,12,13,14,15 and 16 share a common power signal. All outputs share a common 0V signal.

6. Output #0 and 1 may be used as high-speed outputs.

Analog Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of inputs</td>
<td>3 (single-ended)</td>
</tr>
<tr>
<td>Type of input</td>
<td>Set via appropriate wiring and jumper settings.</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>None</td>
</tr>
<tr>
<td>Input range</td>
<td>0-10V, 0-20mA, 4-20mA</td>
</tr>
<tr>
<td>Conversion method</td>
<td>Successive approximation</td>
</tr>
<tr>
<td>Resolution at 0-10V</td>
<td>10-bit (1024 units)</td>
</tr>
<tr>
<td>0-20mA</td>
<td></td>
</tr>
<tr>
<td>Resolution at 4-20mA</td>
<td>204 to 1023 (820 units)</td>
</tr>
<tr>
<td>Conversion time</td>
<td>Synchronized to cycle time</td>
</tr>
<tr>
<td>Input impedance</td>
<td>>100kΩ—voltage</td>
</tr>
<tr>
<td></td>
<td>500Ω—current</td>
</tr>
<tr>
<td>Absolute maximum rating</td>
<td>±15V—voltage</td>
</tr>
<tr>
<td></td>
<td>±30mA—current</td>
</tr>
<tr>
<td>Full-scale error</td>
<td>±2 LSB (0.2%)</td>
</tr>
<tr>
<td>Linearity error</td>
<td>±2 LSB (0.2%)</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>0° to 45°C (32° to 113°F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20° to 60°C (-4° to 140°F)</td>
</tr>
<tr>
<td>Relative Humidity (RH)</td>
<td>5% to 90% (non-condensing)</td>
</tr>
<tr>
<td>Dimensions (WxHxD)</td>
<td>138x23x123mm (5.43x0.9x4.84")</td>
</tr>
<tr>
<td>Weight</td>
<td>186.3g (6.57 oz)</td>
</tr>
</tbody>
</table>

The information in this document reflects products at the date of printing. Unitronics reserves the right, subject to all applicable laws, at any time, at its sole discretion, and without notice, to discontinue or change the features, designs, materials and other specifications of its products, and to either permanently or temporarily withdraw any of the forgoing from the market.

All information in this document is provided "as is" without warranty of any kind, either expressed or implied, including but not limited to any implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

Unitronics assumes no responsibility for errors or omissions in the information presented in this document. In no event shall Unitronics be liable for any special, incidental, indirect or consequential damages of any kind, or any damages whatsoever arising out of or in connection with the use or performance of this information.

The tradenames, trademarks, logos and service marks presented in this document, including their design, are the property of Unitronics (1989) (R’G) Ltd. or other third parties and you are not permitted to use them without the prior written consent of Unitronics or such third party as may own them.