General Description

The products listed above are micro-PLC+HMIs, rugged programmable logic controllers that comprise built-in operating panels.

Detailed Installation Guides containing the I/O wiring diagrams for these models, technical specifications, and additional documentation are located in the Technical Library in the Unitronics website: https://unitronicsplc.com/support-technical-library/

Alert Symbols and General Restrictions

When any of the following symbols appear, read the associated information carefully.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Danger</td>
<td>The identified danger causes physical and property damage.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Warning</td>
<td>The identified danger could cause physical and property damage.</td>
</tr>
<tr>
<td>☢️</td>
<td>Caution</td>
<td>Use caution.</td>
</tr>
</tbody>
</table>

- Before using this product, the user must read and understand this document.
- All examples and diagrams are intended to aid understanding, and do not guarantee operation. Unitronics accepts no responsibility for actual use of this product based on these examples.
- Please dispose of this product according to local and national standards and regulations.
- Only qualified service personnel should open this device or carry out repairs.

- Failure to comply with appropriate safety guidelines can cause severe injury or property damage.
- Do not attempt to use this device with parameters that exceed permissible levels.
- To avoid damaging the system, do not connect/disconnect the device when power is on.

Environmental Considerations

- Do not install in areas with: excessive or conductive dust, corrosive or flammable gas, moisture or rain, excessive heat, regular impact shocks or excessive vibration, in accordance with the standards given in the product’s technical specification sheet.
- Do not place in water or let water leak onto the unit.
- Do not allow debris to fall inside the unit during installation.

- Ventilation: 10mm space required between controller’s top/bottom edges & enclosure walls.
- Install at maximum distance from high-voltage cables and power equipment.
Mounting

Note that figures are for illustrative purposes only.

Dimensions

![Panel Mounting Diagram]

Model	**Cut-out**	**View area**
V120 | 92x92 mm (3.622"x3.622") | 57.5x30.5mm (2.26"x1.2")
M91 | 92x92 mm (3.622"x3.622") | 62x15.7mm (2.44"x0.61")

Panel Mounting

Before you begin, note that the mounting panel cannot be more than 5 mm thick.

1. Make a panel cut-out of the appropriate size:
2. Slide the controller into the cut-out, ensuring that the rubber seal is in place.
3. Push the mounting brackets into their slots on the sides of the panel as shown in the figure below.
4. Tighten the bracket’s screws against the panel. Hold the bracket securely against the unit while tightening the screw.
5. When properly mounted, the controller is squarely situated in the panel cut-out as shown in the accompanying figures.
DIN-rail Mounting

1. Snap the controller onto the DIN rail as shown in the figure to the right.

2. When properly mounted, the controller is squarely situated on the DIN-rail as shown in the figure to the right.

Wiring

- Do not touch live wires.
- This equipment is designed to operate only in SELV/PELV/Class 2/Limited Power environments.
- All power supplies in the system must include double insulation. Power supply outputs must be rated as SELV/PELV/Class 2/Limited Power.
- Do not connect either the 'Neutral' or 'Line' signal of the 110/220VAC to device’s 0V pin.
- All wiring activities should be performed while power is OFF.
- Use over-current protection, such as a fuse or circuit breaker, to avoid excessive currents into the power supply connection point.
- Unused points should not be connected (unless otherwise specified). Ignoring this directive may damage the device.
- Double-check all wiring before turning on the power supply.

Caution

- To avoid damaging the wire, do not exceed a maximum torque of:
 - Controllers offering a terminal block with pitch of 5mm: 0.5 N·m (5 kgf·cm).
 - Controllers offering a terminal block with pitch of 3.81mm: 0.2 N·m (2 kgf·cm).
- Do not use tin, solder, or any substance on stripped wire that might cause the wire strand to break.
- Install at maximum distance from high-voltage cables and power equipment.

Wiring Procedure

Use crimp terminals for wiring;
- Controllers offering a terminal block with pitch of 5mm: 26-12 AWG wire (0.13 mm² – 3.31 mm²).
- Controllers offering a terminal block with pitch of 3.81mm: 26-16 AWG wire (0.13 mm² – 1.31 mm²).
1. Strip the wire to a length of 7±0.5mm (0.270–0.300").
2. Unscrew the terminal to its widest position before inserting a wire.
3. Insert the wire completely into the terminal to ensure a proper connection.
4. Tighten enough to keep the wire from pulling free.

Wiring Guidelines

- Use separate wiring ducts for each of the following groups:
 - Group 1: Low voltage I/O and supply lines, communication lines.
 - Group 2: High voltage Lines, Low voltage noisy lines like motor driver outputs.

 Separate these groups by at least 10cm (4"). If this is not possible, cross the ducts at a 90˚angle.
- For proper system operation, all 0V points in the system should be connected to the system 0V supply rail.
- Product-specific documentation must be fully read and understood before performing any wiring. Allow for voltage drop and noise interference with input lines used over an extended distance. Use wire that is properly sized for the load.

Earthing the product

To maximize system performance, avoid electromagnetic interference as follows:

- Use a metal cabinet.
- Connect the 0V and functional ground points (if exist) directly to the earth ground of the system.
- Use the shortest, less than 1m (3.3 ft.) and thickest, 2.08mm² (14AWG) min, wires possible.

UL Compliance

The following section is relevant to Unitronics’ products that are listed with the UL.

The following models: V120-22-T1, V120-22-T2C, V120-22-UA2, V120-22-UN2, M91-2-R1, M91-2-R2C, M91-2-R6, M91-2-R6C, M91-2-T1, M91-2-T2C, M91-2-UA2, M91-2-UN2 are UL listed for Hazardous Locations.

The following models: V120-22-R1, V120-22-R2C, V120-22-R34, V120-22-R6, V120-22-R6C, V120-22-RA22, V120-22-T1, V120-22-T2C, V120-22-T38, V120-22-UA2, V120-22-UN2, M91-2-FL1, M91-2-PZ1, M91-2-R1, M91-2-R2, M91-2-R2C, M91-2-R34, M91-2-R6, M91-2-R6C, M91-2-RA22, M91-2-T1, M91-2-T2C, M91-2-T38, M91-2-TC2, M91-2-UA2, M91-2-UN2, M91-2-ZK, M91-T4-FL1, M91-T4-PZ1, M91-T4-R1, M91-T4-R2, M91-T4-R2C, M91-T4-R34, M91-T4-R6, M91-T4-R6C, M91-T4-RA22, M91-T4-T1, M91-T4-T2C, M91-T4-T38, M91-T4-TC2, M91-T4-UA2, M91-T4-UN2, M91-T4-ZK are UL listed for Ordinary Location.

For models from series M91, that include “T4” in the Model name, Suitable for mounting on the flat surface of Type 4X enclosure. For examples: M91-T4-R6

UL Ordinary Location

In order to meet the UL ordinary location standard, panel-mount this device on the flat surface of Type 1 or 4X enclosures.
UL Ratings, Programmable Controllers for Use in Hazardous Locations,

Class I, Division 2, Groups A, B, C and D

These Release Notes relate to all Unitronics products that bear the UL symbols used to mark products that have been approved for use in hazardous locations, Class I, Division 2, Groups A, B, C and D.

Caution
- This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D, or Non-hazardous locations only.
- Input and output wiring must be in accordance with Class I, Division 2 wiring methods and in accordance with the authority having jurisdiction.
- **WARNING**—Explosion Hazard—substitution of components may impair suitability for Class I, Division 2.
- **WARNING** – EXPLOSION HAZARD – Do not connect or disconnect equipment unless power has been switched off or the area is known to be non-hazardous.
- **WARNING** – Exposure to some chemicals may degrade the sealing properties of material used in Relays.
- This equipment must be installed using wiring methods as required for Class I, Division 2 as per the NEC and/or CEC.

Panel-Mounting

For programmable controllers that can be mounted also on panel, in order to meet the UL Haz Loc standard, panel-mount this device on the flat surface of Type 1 or Type 4X enclosures.

Relay Output Resistance Ratings

The products listed below contain relay outputs:

Programmable controllers, Models: M91-2-R1, M91-2-R2C, M91-2-R6C, M91-2-R6
- When these specific products are used in hazardous locations, they are rated at 3A res.
- when these specific products are used in non-hazardous environmental conditions, they are rated at 5A res, as given in the product’s specifications.

Temperature Ranges

Programmable Logic Controllers, Models, M91-2-R1, M91-2-R2C, M91-2-R6C.
- When these specific products are used in hazardous locations, they may be used only within a temperature range of 0-40ºC (32- 104ºF).
- When these specific products are used in non-hazardous environmental conditions, they function within the range of 0-50ºC (32- 122ºF) given in the product’s specifications.

Removing / Replacing the battery

When a product has been installed with a battery, do not remove or replace the battery unless the power has been switched off, or the area is known to be non-hazardous.

Please note that it is recommended to back up all data retained in RAM, in order to avoid losing data when changing the battery while the power is switched off. Date and time information will also need to be reset after the procedure.

UL des zones ordinaires:

Pour respecter la norme UL des zones ordinaires, monter l'appareil sur une surface plane de type de protection 1 ou 4X.
Certification UL des automates programmables, pour une utilisation en environnement à risques, Class I, Division 2, Groups A, B, C et D.

Cette note fait référence à tous les produits Unitronics portant le symbole UL - produits qui ont été certifiés pour une utilisation dans des endroits dangereux, Classe I, Division 2, Groupes A, B, C et D.

Attention
- Cet équipement est adapté pour une utilisation en Classe I, Division 2, Groupes A, B, C et D, ou dans Non-dangereux endroits seulement.
- Le câblage des entrées/sorties doit être en accord avec les méthodes de câblage selon la Classe I, Division 2 et en accord avec l'autorité compétente.
- AVERTISSEMENT: Risque d'Explosion – Le remplacement de certains composants rend caduque la certification du produit selon la Classe I, Division 2.
- AVERTISSEMENT - DANGER D'EXPLOSION - Ne connecter pas ou ne débranche pas l'équipement sans avoir préalablement coupé l'alimentation électrique ou la zone est reconnue pour être non dangereuse.
- AVERTISSEMENT - L'exposition à certains produits chimiques peut dégrader les propriétés des matériaux utilisés pour l'étanchéité dans les relais.
- Cet équipement doit être installé utilisant des méthodes de câblage suivant la norme Class I, Division 2 NEC et /ou CEC.

Montage de l'écran:
Pour les automates programmables qui peuvent aussi être monté sur l'écran, pour pouvoir être au standard UL, l'écran doit être monté dans un coffret avec une surface plane de type 1 ou de type 4X.

Certification de la résistance des sorties relais
Les produits énumérés ci-dessous contiennent des sorties relais:
- Automates programmables, modèles : M91-2-R1, M91-2-R6C, M91-2-R6, M91-2-R2C
- Lorsque ces produits spécifiques sont utilisés dans des endroits dangereux, ils supportent un courant de 3A charge résistive.
- Lorsque ces produits spécifiques sont utilisés dans un environnement non dangereux, ils sont évalués à 5A res, comme indiqué dans les specifications du produit Plages de températures.

Plages de température
Les Automates programmables, modèles: M91-2-R1, M91-2-R2C, M91-2-R6C.
- Dans un environnement dangereux, ils peuvent être seulement utilisés dans une plage de température allant de 0 et 40°C (32-104°F).
- Dans un environnement non dangereux, ils peuvent être utilisés dans une plage de température allant de 0 et 50°C (32-122°F).

Retrait / Remplacement de la batterie
Lorsqu'un produit a été installé avec une batterie, retirez et remplacez la batterie seulement si l'alimentation est éteinte ou si l'environnement n'est pas dangereux.
Veuillez noter qu'il est recommandé de sauvegarder toutes les données conservées dans la RAM, afin d'éviter de perdre des données lors du changement de la batterie lorsque l'alimentation est coupée. Les informations sur la date et l'heure devront également être réinitialisées après la procedure.
V120-22-RA22 Graphic Operator Panel & Programmable Logic Controller

24VDC, 12 npn/npn digital inputs, including 2 analog inputs*, 2 temperature measurement inputs**, high-speed counter/Shaft encoder input, 8 relay outputs, 2 analog outputs, I/O expansion port, 2 RS232/RS485 ports

Power supply
- 24VDC
- Permissible range: 20.4VDC to 28.8VDC with less than 10% ripple
- Maximum current consumption: 250mA@24VDC

Digital inputs
- 12 npn (source) or npn (sink) inputs. See Note 1.
- Nominal input voltage: 24VDC. See Note 2.
- Input voltages for npn (source): 0-5VDC for Logic ‘0’
- Input voltages for npn (sink): 17-28.8VDC<1mA for Logic ‘0’
- Input current: 3.7mA@24VDC
- Input impedance: 6.9kΩ
- Response time (except high-speed inputs): 10mS typical
- Galvanic isolation: None
- Input cable length: Up to 100 meters, unshielded

High-speed counter
- Specifications below apply when inputs are wired for use as a high-speed counter input/Shaft encoder. See Notes 3 and 4.
- Resolution: 32-bit
- Input frequency: 10kHz max.
- Minimum pulse: 40μS

Notes:
1. All 12 inputs can be set to npn (source) or npn (sink) via a single jumper and appropriate wiring.
2. npn (sink) inputs use voltage supplied from the controller’s power supply.
3. Input #0 can function as either high-speed counter or as part of a shaft encoder. In each case, high-speed input specifications apply. When used as a normal digital input, normal input specifications apply.
4. Input #1 can function as either counter reset, or as a normal digital input: in either case, specifications are those of a normal digital input. This input may also be used as part of a shaft encoder. In this case, high-speed input specifications apply.

Warnings:
- Unused pins should not be connected. Ignoring this directive may damage the controller.
- Improper use of this product may severely damage the controller.
- Refer to the controller’s User Guide regarding wiring considerations.
- Before using this product, it is the responsibility of the user to read the product’s User Guide and all accompanying documentation.

* These inputs can function as normal digital inputs or analog inputs (voltage/current), in accordance with jumper settings and wiring connections.
** These inputs can function as normal digital inputs, RTD, or thermocouple inputs, in accordance with jumper settings and wiring connections.
Analog Inputs

Two 14-bit, multi-range inputs:
- 0-10V, 0-20mA, 4-20mA
- See Note 1

Conversion method: Voltage to Frequency

Input impedance: 12.77kΩ for voltage, 371Ω for current

Isolation: None

Normal mode

- Resolution at 0-10V, 0-20mA: 14-bit (16384 units)
- Resolution at 4-20mA: 3277 to 16383 (13107 units)
- Conversion time: 100μSec minimum per input (according to filter type)

Fast mode

- Resolution at 0-10V, 0-20mA: 12-bit (4096 units)
- Resolution at 4-20mA: 512 to 4095 (3277 units)
- Conversion time: 30μSec minimum per input (according to filter type)

Absolute maximum rating: ±15V for voltage, ±30mA for current

Linearity error: 0.04% maximum of full scale

Error limit: 0.4% of input value

Status indication: Yes, see Note 2

Notes:
1. Inputs #5 and #6 can each function as an analog input, related to signal 0V, in accordance with jumper settings and wiring connections.
2. The analog value can also indicate faults, as shown below:

<table>
<thead>
<tr>
<th>Value: 12-bit (Fast mode)</th>
<th>Value: 14-bit (Normal mode)</th>
<th>Input value deviates:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>Slightly below the input range.</td>
</tr>
<tr>
<td>4096</td>
<td>16384</td>
<td>Slightly above the input range.</td>
</tr>
<tr>
<td>32767</td>
<td>32767</td>
<td>Greatly above or below the input range.</td>
</tr>
</tbody>
</table>

Thermocouple inputs

Two differential inputs.
- See Note 1

Input type: Thermocouple. See Note 2

Input ranges: As shown in the table below

Isolation: None

Conversion method: Voltage to Frequency

Resolution: 0.1°C / 0.1°F

Conversion time: 100μSec minimum per input (according to filter type)

Input impedance: >10MΩ

Cold junction compensation: local, automatic

Cold junction compensation error: ±1.5°C / ±2.7°F maximum

Absolute maximum rating: ±0.6 VDC

Linearity error: 0.04% maximum of full scale

Error limit: 0.4% of input value

Status indication: None

Warm-up time: 1/2 hour typically, ±1°C / ±1.8°F repeatability

Notes:
1. Thermocouple #0: use Input #10 as positive input & Input #9 as negative input.
2. Thermocouple #1: use Input #8 as positive input & Input #7 as negative input.

To use inputs as thermocouple, set the relevant jumpers and use appropriate wiring.

2. The device can also measure voltage within the range of -5 to 56mV,
at resolution of 0.01mV. The device can also measure raw value frequency.

Table 1: Input ranges

<table>
<thead>
<tr>
<th>Type</th>
<th>Temperature range</th>
<th>ANSI (USA)</th>
<th>BS 1843 (UK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>200 to 1820°C</td>
<td>+ Grey</td>
<td>+ None</td>
</tr>
<tr>
<td></td>
<td>(300 to 3276°F)</td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>E</td>
<td>-200 to 750°C</td>
<td>+ Violet</td>
<td>+ Brown</td>
</tr>
<tr>
<td></td>
<td>(-328 to 1382°F)</td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>J</td>
<td>-200 to 760°C</td>
<td>+ White</td>
<td>+ Yellow</td>
</tr>
<tr>
<td></td>
<td>(-328 to 1400°F)</td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>K</td>
<td>-200 to 1250°C</td>
<td>+ Yellow</td>
<td>+ Brown</td>
</tr>
<tr>
<td></td>
<td>(-328 to 2292°F)</td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>N</td>
<td>-200 to 1300°C</td>
<td>+ Orange</td>
<td>+ Red</td>
</tr>
<tr>
<td></td>
<td>(-328 to 2372°F)</td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>R</td>
<td>0 to 1768°C</td>
<td>+ Black</td>
<td>+ White</td>
</tr>
<tr>
<td></td>
<td>(32 to 3214°F)</td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>S</td>
<td>0 to 1768°C</td>
<td>+ Black</td>
<td>+ White</td>
</tr>
<tr>
<td></td>
<td>(32 to 3214°F)</td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>T</td>
<td>-200 to 400°C</td>
<td>+ Blue</td>
<td>+ White</td>
</tr>
<tr>
<td></td>
<td>(-328 to 752°F)</td>
<td>- Red</td>
<td>- Blue</td>
</tr>
</tbody>
</table>

Voltage / Current connection

![Diagram of voltage / current connection]

Notes:
1. Shields should be connected at the signals’ source.
2. The 0V signal of the analog input must be connected to the controller’s 0V.

Current connection

![Diagram of current connection]

Notes:
1. Shields should be connected at the signals’ source.
2. The 0V signal of the analog input must be connected to the controller’s 0V.

Thermocouple connection

![Diagram of thermocouple connection]

Note:
Shields should be connected at the signals’ source.
RTD inputs

<table>
<thead>
<tr>
<th>Input ranges</th>
<th>-200 to 600°C (-328 to 1100°F)</th>
<th>1 to 320 ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Measurement resolution</td>
<td>0.1°C / 0.1°F</td>
<td></td>
</tr>
<tr>
<td>Conversion method</td>
<td>Voltage to Frequency</td>
<td></td>
</tr>
<tr>
<td>Conversion time</td>
<td>300msSec minimum per input</td>
<td></td>
</tr>
<tr>
<td>(according to filter type)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>>10MΩ</td>
<td></td>
</tr>
<tr>
<td>Auxiliary current for PT100</td>
<td>150µA typical</td>
<td></td>
</tr>
<tr>
<td>Linearity error</td>
<td>0.04% max. of full scale</td>
<td></td>
</tr>
<tr>
<td>Error limit</td>
<td>0.4% of input value</td>
<td></td>
</tr>
<tr>
<td>Status indication</td>
<td>Yes, see Note 2</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. PT100 #0: use input #9 & input #10, related to CM signal (Input #11).
2. PT100 #1: use input #7 & input #6, related to CM signal (Input #11).
3. To use inputs as PT100, set the relevant jumpers and use appropriate wiring.
4. The analog value can also indicate faults, as shown below:

<table>
<thead>
<tr>
<th>Value</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>32767</td>
<td>Sensor is not connected to input, or value exceeds the permissible range</td>
</tr>
<tr>
<td>-32767</td>
<td>Sensor is short-circuited</td>
</tr>
</tbody>
</table>

PT100 connection

- **3 Wire connection**
- **4 Wire connection**

Note:
- Shields should be connected at the signals' source.
- A 4 wire PT100 can be used by leaving one of the sense leads unconnected.

Analog outputs

<table>
<thead>
<tr>
<th>Two 12-bit analog outputs:</th>
<th>0-10V, 4-20mA, See Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load impedance</td>
<td>1kΩ minimum - voltage</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>5000Ω maximum - current</td>
</tr>
<tr>
<td>Resolution</td>
<td>12-bit (4096 units)</td>
</tr>
<tr>
<td>Conversion time</td>
<td>Synchronized to scan</td>
</tr>
<tr>
<td>Linearity error</td>
<td>±0.1%</td>
</tr>
<tr>
<td>Operational error limits</td>
<td>±0.2%</td>
</tr>
</tbody>
</table>

Note:
- Each analog output range is defined by wiring, jumpers and within the controller’s software.

Analog outputs connection

- Voltage connection
- Current connection

Notes:
- A shielding should be earthed, connected to the earth of the cabinet.
- The 0V signal of the analog outputs must be the same 0V used by the controller’s power supply.

Relay outputs

<table>
<thead>
<tr>
<th>8 relays (in 2 groups)</th>
<th>See Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output type</td>
<td>SPST-NO (Form A)</td>
</tr>
<tr>
<td>Type of relay</td>
<td>Tyco PCN-124D3MHz or compatible</td>
</tr>
<tr>
<td>Isolation</td>
<td>by relay</td>
</tr>
<tr>
<td>Output current (resistive load)</td>
<td>3A max per output</td>
</tr>
<tr>
<td>6A max total for common</td>
<td></td>
</tr>
<tr>
<td>Rated voltage</td>
<td>250VAC / 30VDC</td>
</tr>
<tr>
<td>Minimum load</td>
<td>1mA@5VDC</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>100k operations at maximum load</td>
</tr>
<tr>
<td>Response time</td>
<td>10mA (typical)</td>
</tr>
<tr>
<td>Contact protection</td>
<td>External precautions required (see below)</td>
</tr>
</tbody>
</table>

Note:
- Outputs #0, #1, #2 and #3 share a common signal.
- Outputs #4, #5, #6 and #7 share a common signal.

Relay outputs connection

- Each Output group can be wired separately to either AC or DC as shown below.
- The power signals in the illustration below are isolated from the controller’s power signals.

Increasing Contact Life Span

- To increase the life span of the relay output contacts:
 - Use a suitable contact material.
 - Insulate the contacts with a suitable material.
 - Use a suitable circuit design.

Note:
- Increase the life span of the relay output contacts by using a suitable circuit design.
Graphic Display
- STN, LCD display

Illumination backlight
- LED, yellow-green, software-controlled

Display resolution
- 128x64 pixels

Keypad
- Sealed membrane
- Number of keys: 16

Program
- **Application memory**: 448K
- **Memory Bits (coils)**: 4096
- **Memory integers (registers)**: 2048
- **Long integers (32 bit)**: 256
- **Double Word (32 bit unsigned)**: 64
- **Floats**: 24
- **Timers**: 192
- **Counters**: 24
- **Data Tables**: 120K (RAM) / 64K (FLASH)
- **HMI displays**: Up to 255
- **Execution time**: 0.8µs for bit operations

I/O expansion port
- Up to 128 additional I/Os, including digital & analog I/Os, temperature and weight inputs and more. (number of I/Os may vary according to expansion model)

Miscellaneous
- **Clock (RTC)**: Real-time clock functions (Date and time).
- **Battery back-up**: 7 years typical at 25°C, battery back-up for RTC and system data, including variable data.
- **Battery**: Coin type, 3V lithium battery, CR2450
- **Weight**: 317g (11.2 oz.)
- **Operational temperature**: 0 to 50°C (32 to 122°F)
- **Storage temperature**: -20 to 60°C (-4 to 140°F)
- **Relative Humidity (RH)**: 5% to 95% (non-condensing)
- **Mounting method**: DIN-rail mounted (IP20/NEMA1), Panel mounted (IP65/NEMA4X)

RS232/RS485 serial ports
- Used for:
 - Application Download/Upload
 - Application Testing (Debug)
 - Connect to GSM or standard telephone modem:
 - Send/receive SMS messages
 - Remote access programming
 - RS485 Networking
- **RS232 (see note)**: 2 ports
- **Galvanic isolation**: None
- **Voltage limits**: ±20V
- **RS485 (see note)**: 2 ports
- **Input voltage**: -7 to +12V differential max.
- **Cable type**: Shielded twisted pair, in compliance with EIA RS485
- **Galvanic isolation**: None
- **Nodes**: Up to 32
- **Baud rate**: 110 – 57600 bps

Note:
- RS232/RS485 is determined by jumper settings and wiring. Refer to the controller's User Guide regarding communications.
Power supply
- 24VDC

Permissible range
- 20.4VDC to 28.8VDC with less than 10% ripple

Maximum current consumption
- 220mA@24VDC

Digital inputs
- 12 pnp (source) or npn (sink) inputs. See Note 1.
- Nominal input voltage: 24VDC
- See Notes 2.
- Input voltages for pnp (source): 0-6VDC for Logic ‘0’
- 17-28.8VDC for Logic ‘1’
- Input voltages for npn (sink): 17-28.8VDC/1mA for Logic ‘0’
- 0-5VDC/3mA for Logic ‘1’
- Input current: 3.7mA@24VDC
- Input impedance: 6.9kΩ
- Response time (except high-speed inputs): 10ms typical
- Galvanic isolation: None
- Input cable length: Up to 100 meters, unshielded

High-speed counter
- Specifications below apply when inputs are wired for use as a high-speed counter/encoder. See Notes 3 and 4.
- Resolution: 16-bit
- Input frequency: 10kHz max.
- Minimum pulse: 40μs

Notes:
1. All 12 inputs can be set to pnp (source) or npn (sink) via a single jumper and appropriate wiring.
2. npn (sink) inputs use voltage supplied from the controller’s power supply.
3. Input #0 can function as either high-speed counter or as part of a shaft encoder. In each case, high-speed input specifications apply. When used as a normal digital input, normal input specifications apply.
4. Input #1 can function as either counter reset, or as a normal digital input; in either case, specifications are those of a normal digital input. This input may also be used as part of a shaft encoder. In this case, high-speed input specifications apply.

⚠️ Warnings:
- Unused pins should not be connected. Ignoring this directive may damage the controller.
- Improper use of this product may severely damage the controller.
- Refer to the controller’s User Guide regarding wiring considerations.
- Before using this product, it is the responsibility of the user to read the product’s User Guide and all accompanying documentation.
Analog Inputs

Two 14-bit, multi-range inputs:
0-10V, 0-20mA, 4-20mA
See Note 1.

Conversion method
Voltage to Frequency

Input impedance
12.77kΩ for voltage
37Ω for current

Isolation
None

Normal mode
Resolution at 0-10V, 0-20mA
14-bit (16384 units)
Resolution at 4-20mA
3277 to 16383 (13107 units)
Conversion time
100mSec minimum per input
(according to filter type)

Fast mode
Resolution at 0-10V, 0-20mA
12-bit (4096 units)
Resolution at 4-20mA
819 to 4095 (3277 units)
Conversion time
30mSec minimum per input
(according to filter type)

Absolute maximum rating
±15V for voltage
±30mA for current

Linearity error
0.04% maximum of full scale

Error limit
0.4% of input value

Status indication
Yes, see Note 2

Notes:
1. Input #5 and input #6 can be used as analog inputs, related to signal 0V,
in accordance with jumper settings and wiring connections.
2. The analog value can also indicate faults, as shown below:

<table>
<thead>
<tr>
<th>Value: 12-bit (Fast mode)</th>
<th>Value: 14-bit (Normal mode)</th>
<th>Input value deviates:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>Slightly below the input range.</td>
</tr>
<tr>
<td>4096</td>
<td>16384</td>
<td>Slightly above the input range.</td>
</tr>
<tr>
<td>32767</td>
<td>32767</td>
<td>Greatly above or below the input range.</td>
</tr>
</tbody>
</table>

Voltage / Current connection

Notes:
a. Shields should be connected at the signals’ source.
b. The 0V signal of the analog input must be connected to the controller’s 0V.

Thermocouple inputs

Two differential inputs.
See Note 1.

Input type
Thermocouple. See Note 2.

Input ranges
As shown in the table below

Isolation
None

Conversion method
Voltage to Frequency

Resolution
0.1°C / 0.1°F

Conversion time
100mSec minimum per input
(according to filter type)

Input impedance
>10MΩ

Cold junction compensation
Local, automatic

Cold junction compensation error
±1.5°C / ±2.7°F maximum

Absolute maximum rating
±0.6 VDC

Linearity error
0.04% maximum of full scale

Error limit
0.4% of input value

Status indication
None

Warm-up time
1/4 hour typically,
±1°C / ±1.8°F repeatability

Notes:
1. Thermocouple #0: use Input #10 as positive input & Input #9 as negative input.
 Thermocouple #1: use Input #8 as positive input & Input #7 as negative input.
 To use inputs as thermocouple, set the relevant jumpers and use appropriate wiring.
2. The device can also measure voltage within the range of -5 to 58mV,
at resolution of 0.01mV. The device can also measure raw value frequency.

Table 1: input ranges

<table>
<thead>
<tr>
<th>Type</th>
<th>Temperature range (°C)</th>
<th>Temperature range (°F)</th>
<th>ANSI (USA)</th>
<th>Wire color</th>
</tr>
</thead>
<tbody>
<tr>
<td>mV</td>
<td>-5 to 56mV</td>
<td>-5 to 56mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>200 to 1820°C</td>
<td>360 to 3276°F</td>
<td>+ Grey</td>
<td>+ None</td>
</tr>
<tr>
<td></td>
<td>(300 to 3276°F)</td>
<td></td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>E</td>
<td>-200 to 750°C</td>
<td>-328 to 1382°F</td>
<td>+ Violet</td>
<td>+ Brown</td>
</tr>
<tr>
<td></td>
<td>(-328 to 1382°F)</td>
<td></td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>J</td>
<td>-200 to 760°C</td>
<td>-328 to 1400°F</td>
<td>+ White</td>
<td>+ Yellow</td>
</tr>
<tr>
<td></td>
<td>(-328 to 1400°F)</td>
<td></td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>K</td>
<td>-200 to 1250°C</td>
<td>-328 to 2382°F</td>
<td>+ Yellow</td>
<td>+ Brown</td>
</tr>
<tr>
<td></td>
<td>(-328 to 2382°F)</td>
<td></td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>N</td>
<td>-200 to 1300°C</td>
<td>-328 to 2372°F</td>
<td>+ Orange</td>
<td>+ Orange</td>
</tr>
<tr>
<td></td>
<td>(-328 to 2372°F)</td>
<td></td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>R</td>
<td>0 to 1768°C</td>
<td>(32 to 3214°F)</td>
<td>+ Black</td>
<td>+ White</td>
</tr>
<tr>
<td></td>
<td>(32 to 3214°F)</td>
<td></td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>S</td>
<td>0 to 1768°C</td>
<td>(32 to 3214°F)</td>
<td>+ Black</td>
<td>+ White</td>
</tr>
<tr>
<td></td>
<td>(32 to 3214°F)</td>
<td></td>
<td>- Red</td>
<td>- Blue</td>
</tr>
<tr>
<td>T</td>
<td>-200 to 400°C</td>
<td>(-328 to 752°F)</td>
<td>+ Blue</td>
<td>+ White</td>
</tr>
<tr>
<td></td>
<td>(-328 to 752°F)</td>
<td></td>
<td>- Red</td>
<td>- Blue</td>
</tr>
</tbody>
</table>

Notes:
- Shields should be connected at the signals’ source.
RTD inputs

- **Input range**: -200 to 600°C (-328 to 1100°F) / 1 to 320 ohm
- **Isolation**: None
- **Measurement resolution**: 0.1°C / 0.1°F
- **Conversion method**: Voltage to Frequency
- **Conversion time**: 300mSec minimum per input (according to filter type)
- **Input impedance**: >10MΩ
- **Auxiliary current for PT100**: 150µA typical
- **Linearity error**: 0.04% max. of full scale
- **Error limit**: 0.4% of input value
- **Status indication**: Yes, see Note 2

Notes:
1. PT100 #0: use Input #9 & Input #10, related to CM signal (Input #11)
2. PT100 #1: use Input #7 & Input #8, related to CM signal (Input #11)
3. To use inputs as PT100, set the relevant jumpers and use appropriate wiring.
4. The analog value can also indicate faults, as shown below:

<table>
<thead>
<tr>
<th>Value</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>32767</td>
<td>Sensor is not connected to input, or value exceeds the permissible range</td>
</tr>
<tr>
<td>-32767</td>
<td>Sensor is short-circuited</td>
</tr>
</tbody>
</table>

Relay outputs

- **8 relays (in 2 groups)** See Note 1
 - **Output type**: SPST-N0 (Form A)
 - **Type of relay**: Tyco PCN-124D3MHZ or compatible
 - **Isolation**: by relay
 - **Output current (resistive load)**: 3A max per output
 - **Rated voltage**: 250VAC / 30VDC
 - **Minimum load**: 1mA @ 5VDC
 - **Life expectancy**: 100k operations at maximum load
 - **Response time**: 10ms (typical)
 - **Contact protection**: External precautions required (see below)

Note:
- Outputs #0, #1, #2 and #3 share a common signal.
- Outputs #4, #5, #6 and #7 share a common signal.

PT100 connection

- **3 Wire connection**
- **4 Wire connection**

Note:
- a. Shields should be connected at the signals’ source.
- b. 4 wire PT100 can be used by leaving one of the sense leads unconnected.

Analog outputs

- **Two 12-bit analog outputs:** 0-10V, 0-20mA. See Note 2
- **Load impedance**: 1kΩ minimum - voltage 50000 maximum - current
- **Galvanic isolation**: None
- **Resolution**: 12-bit (4096 units)
- **Conversion time**: Synchronized to scan time
- **Linearity error**: ±0.1%
- **Operational error limits**: ±0.2%

Note:
Each analog output range is defined by wiring, jumpers and within the controller’s software.

Analog outputs connection

- **Voltage connection connection**
- **Current connection connection**

Notes:
- a. Shields should be earthed, connected to the earth of the cabinet.
- b. The 0V signal of the analog outputs must be the same 0V used by the controller’s power supply.

Relay outputs connection

- Each Output group can be wired separately to either AC or DC as shown below.
- The power signals in the illustration below are isolated from the controller’s power signals.

Increasing Contact Life Span
To increase the life span of the relay output contacts and protect the device from potential damage by reverse EMF, connect:
- a clamping diode in parallel to each inductive DC load.
- an RC snubber circuit in parallel with each inductive AC load.
Display
- STN, LCD display

Illumination
- LED yellow-green backlight

Display size
- 2 lines, 16 characters long

Character size
- 5 x 8 matrix, 2.95 x 5.55mm

Keypad
- Sealed membrane
 - Number of keys: 15

PLC program
- Ladder Code Memory (virtual): 36K
- Memory Bits (coils): 256
- Memory Integers (Registers): 256
- Timers: 64
- Execution time: 12μsec. for bit operations
- Database: 1024 integers (indirect access)
- HMI displays: 80 user-designed displays
- HMI variables: 64 HMI variables are available to conditionally display and modify text, numbers, dates, times & timer values. The user can also create a list of up to 120 variable text displays, totaling up to 2K.

I/O expansion port
- Up to 96 additional I/Os, including digital & analog I/Os, temperature and weight inputs and more. (number of I/Os may vary according to expansion model)

Miscellaneous
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock (RTC)</td>
<td>Real-time clock functions (Date and Time).</td>
</tr>
<tr>
<td>Battery back-up</td>
<td>7 years typical at 25°C, battery back-up for RTC and system data, including variable data.</td>
</tr>
<tr>
<td>Weight</td>
<td>314g (11.1 oz.)</td>
</tr>
<tr>
<td>Operational temperature</td>
<td>0 to 50°C (32 to 122°F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20 to 60°C (-4 to 140°F)</td>
</tr>
<tr>
<td>Relative Humidity (RH)</td>
<td>5% to 95% (non-condensing)</td>
</tr>
<tr>
<td>Mounting method</td>
<td>DIN-rail mounted (IP20/NEMA1) Panel mounted (IP65/NEMA4X)</td>
</tr>
</tbody>
</table>

RS232/RS485 serial port
- Used for:
 - Application Download/Upload
 - Application Testing (Debug)
 - Connect to GSM or standard telephone modem:
 - Send/receive SMS messages
 - Remote access programming
 - RS485 Networking

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232 (see note)</td>
<td>1 port</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>None</td>
</tr>
<tr>
<td>Voltage limits</td>
<td>±20V</td>
</tr>
<tr>
<td>RS485 (see note)</td>
<td>1 port</td>
</tr>
<tr>
<td>Input voltage</td>
<td>±7 to ±12V differential max.</td>
</tr>
<tr>
<td>Cable type</td>
<td>Shielded twisted pair, in compliance with EIA RS485</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>None</td>
</tr>
<tr>
<td>Notes</td>
<td>Up to 32</td>
</tr>
<tr>
<td>Baud rate</td>
<td>110 – 57600 bps</td>
</tr>
</tbody>
</table>

Note: RS232/RS485 is determined by jumper settings and wiring as described in the document "M91 RS485 Port Settings" packaged with the controller.
I/O Jumper Settings

The tables below show how to set a specific jumper to change the functionality of a specific input. To open the controller and access the jumpers, refer to the directions at the end of these specifications.

Important: Incompatible jumper settings and wiring connections may severely damage the controller.

Temperature measurement inputs

Inputs # 7-10

JP5, JP6, JP7

Input #9 and Input #10 (universal input No.0)

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP5</th>
<th>JP6</th>
<th>JP7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal digital inputs*</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Thermocouple input (See Note 1)</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>PT100 Input (See Note 2)</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

Notes:
1. Thermocouple input is between Input #10 (T+) and Input #9 (T-).
2. PT100 input is connected to Input #9 and Input #10, related to CM signal (Input #11).

JP1, JP2, JP3

Input #7 and Input #8 (universal input No.1)

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP1</th>
<th>JP2</th>
<th>JP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal digital inputs*</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Thermocouple input (See Note 1)</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>PT100 input (See Note 2)</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

Notes:
1. Thermocouple input is between Input #8 (T+) and Input #7 (T-).
2. PT100 input is connected to Input #7 and Input #8, related to CM signal (Input #11).

JP11

Input #11

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal digital input*</td>
<td>A</td>
</tr>
<tr>
<td>CM signal for PT100 inputs</td>
<td>B</td>
</tr>
</tbody>
</table>

Analog (Voltage/Current) Inputs

Inputs # 5-6

JP8, JP9

Input #6 (universal input No. 2)

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP8</th>
<th>JP9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal digital input*</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Analog input - voltage</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Analog input - current</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

JP4, JP10

Input #5 (universal input No. 3)

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP4</th>
<th>JP10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal digital input*</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Analog input - voltage</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Analog input - current</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

Default factory setting
JP12
Input type (for all digital inputs)

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP12</th>
</tr>
</thead>
<tbody>
<tr>
<td>npn (sink)</td>
<td>A</td>
</tr>
<tr>
<td>pnp (source)*</td>
<td>B</td>
</tr>
</tbody>
</table>

*Note:
Inputs #0-4, and #5-11 when these are set as normal digital inputs.

JP13
Analog output #0

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage*</td>
<td>A</td>
</tr>
<tr>
<td>Current</td>
<td>B</td>
</tr>
</tbody>
</table>

JP14
Analog output #1

<table>
<thead>
<tr>
<th>To use as</th>
<th>JP14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage*</td>
<td>A</td>
</tr>
<tr>
<td>Current</td>
<td>B</td>
</tr>
</tbody>
</table>

*Default factory setting

In this figure, the jumper settings will cause the inputs and the analog outputs to function as follows:

- Universal Input #0 (Input #9 and #10): PT100 input, related to the CM Signal (Input #11)
- Universal Input #1 (Input #7 and Input #8): Termocouple input
- Universal Input #2 (Input #6): Voltage input related to 0V
- Universal Input #3 (Input #5): Normal npn, 24VDC digital input Input #0 to Input #4: npn, 24VDC digital inputs.
 (Note that these inputs can only function as normal digital inputs.)
- Analog output #0: Voltage output
- Analog output #1: Current output
Communication Ports

Note that different controller models offer different serial and CANbus communication options. To see which options are relevant, check your controller’s technical specifications.

- Turn off power before making communications connections.
 - Note that the serial ports are not isolated.

Caution
- Signals are related to the controller’s 0V; the same 0V is used by the power supply.
- Always use the appropriate port adapters.

Serial Communications

This series comprises 2 serial port can be set to either RS232 or RS485 according to jumper settings. By default, the ports are set to RS232.

Use RS232 to download programs from a PC, and to communicate with serial devices and applications, such as SCADA.

Use RS485 to create a multi-drop network containing up to 32 devices.

Caution
- The serial ports are not isolated. If the controller is used with a non-isolated external device, avoid potential voltage that exceeds ± 10V.

Pinouts

The pinouts below show the signals between the adapter and port.

<table>
<thead>
<tr>
<th>RS232</th>
<th>Description</th>
<th>RS485</th>
<th>Description</th>
<th>Controller Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin #</td>
<td></td>
<td>Pin #</td>
<td></td>
<td>Pin #1</td>
</tr>
<tr>
<td>1*</td>
<td>DTR signal</td>
<td>1</td>
<td>A signal (+)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0V reference</td>
<td>2</td>
<td>(RS232 signal)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TXD signal</td>
<td>3</td>
<td>(RS232 signal)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RXD signal</td>
<td>4</td>
<td>(RS232 signal)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0V reference</td>
<td>5</td>
<td>(RS232 signal)</td>
<td></td>
</tr>
<tr>
<td>6*</td>
<td>DSR signal*</td>
<td>6</td>
<td>B signal (-)</td>
<td></td>
</tr>
</tbody>
</table>

*Standard programming cables do not provide connection points for pins 1 and 6.

RS232 to RS485: Changing Jumper Settings

- To access the jumpers, open the controller and then remove the module’s PCB board. Before you begin, turn off the power supply, disconnect and dismount the controller.
- When a port is adapted to RS485, Pin 1 (DTR) is used for signal A, and Pin 6 (DSR) signal is used for signal B.
- If a port is set to RS485, and flow signals DTR and DSR are not used, the port can also be used to communicate via RS232; with the appropriate cables and wiring.

Caution
- Before performing these actions, touch a grounded object to discharge any electrostatic charge.
- Avoid touching the PCB board directly. Hold the PCB board by its connectors.
Opening the controller

1. Turn power off before opening the controller.
2. Locate the 4 slots on the sides of the controller.
3. Using the blade of a flat-bladed screwdriver, gently pry off the back of the controller.

4. Gently remove the top PCB board:
 a. Use one hand to hold the top-most PCB board by its top and bottom connectors.
 b. With the other hand, grasp the controller, while keeping hold of the serial ports; this will keep the bottom board from being removed together with the top board.
 c. Steadily pull the top board off.
5. Locate the jumpers, and then change the jumper settings as required.

6. Gently replace the PCB board. Make certain that the pins fit correctly into their matching receptacle.
 a. Do not force the board into place; doing so may damage the controller.
7. Close the controller by snapping the plastic cover back in its place. If the card is placed correctly, the cover will snap on easily.
M91: RS232/RS485 Jumper Settings

<table>
<thead>
<tr>
<th>To use as</th>
<th>Jumper 1</th>
<th>Jumper 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232*</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>RS485</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

RS485 Termination

<table>
<thead>
<tr>
<th>Termination</th>
<th>Jumper 3</th>
<th>Jumper 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON*</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>OFF</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

*Default factory setting.

V120: RS232/RS485 Jumper Settings

<table>
<thead>
<tr>
<th>Jumper Settings</th>
<th>RS232*</th>
<th>RS485</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM 1 COM 2</td>
<td>1 A</td>
<td>5 A</td>
</tr>
<tr>
<td></td>
<td>2 A</td>
<td>6 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RS485 Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumper ON* OFF</td>
</tr>
<tr>
<td>3 4 7 8 A B A B</td>
</tr>
</tbody>
</table>

*Default factory setting.
CANbus

These controllers comprise a CANbus port. Use this to create a decentralized control network of up to 63 controllers, using either Unitronics’ proprietary CANbus protocol or CANopen.

The CANbus port is galvanically isolated.

CANbus Wiring

Use twisted-pair cable. DeviceNet® thick shielded twisted pair cable is recommended.

Network terminators: These are supplied with the controller. Place terminators at each end of the CANbus network.

Resistance must be set to 1%, 1210, 1/4W.

Connect ground signal to the earth at only one point, near the power supply.

The network power supply need not be at the end of the network.

CANbus Connector

24V Power Supply

Circuit protection device

121 Ω terminating resistor

24V Common Supply for CANbus

CAN Low

Protective Earth

CAN High

24V Power Supply for CANbus

The information in this document reflects products at the date of printing. Unitronics reserves the right, subject to all applicable laws, at any time, at its sole discretion, and without notice, to discontinue or change the features, designs, materials and other specifications of its products, and to either permanently or temporarily withdraw any of the foregoing from the market.

All information in this document is provided "as is" without warranty of any kind, either expressed or implied, including but not limited to any implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Unitronics assumes no responsibility for errors or omissions in the information presented in this document. In no event shall Unitronics be liable for any special, incidental, indirect or consequential damages of any kind, or any damages whatsoever arising out of or in connection with the use or performance of this information.

The tradenames, trademarks, logos and service marks presented in this document, including their design, are the property of Unitronics (1989) (R°G) Ltd. or other third parties and you are not permitted to use them without the prior written consent of Unitronics or such third party as may own them.

UG_V120_M91-RA22.pdf 11/22